NONLINEAR WAVES ON A VERTICAL FLUID FILM

A, P, Ivanskii UDC 532,516

In this paper we consider waves of small, but finite, amplitude, generated on the surface layer of a vis-
cous incompressible fluid running on a vertical solid surface. The treatment is for small Reynolds numbers
Re = Ughy/v, and is based on the full system of Navier-Stokes equations with boundary conditions on the wall and
on the free surface of the fluid (the action of surface tension is taken into account).

A similar problem, but with no surface tension, and for not too large inclination angles of the wall, was
considered in [1, 2].

An equation of the form
Rt + She - Bhhy - Rhax -+ Vhaxax = 0 1)

is used in [3, 4], taking into account effects of nonlinearity, "negative viscosity" (the term ahy.), and dissipa-
tion (the term Yhyyyx) for waves on the surface of the fluid film,

A similar equation was obtained in [5] for concentration waves in chemically reacting diffusion media,
Also given is an analytic solution of this equation in the stationary case, as well as qualitative discussion of
the mechanisms of pumping, dissipation, and energy transfer as obtained from the spectra described by this
equation. Numerical analysis of the perturbation evolution was carried out in [6] for Eq. (1) with periodic
boundary conditions, and it has been shown that during the evolution process the regular initial perturbation
reaches a turbulent state (chemical turbulence).

As already mentioned, Eq. (1) describes nonlinearity, energy transfer, and dissipation for waves in
active media, but, unfortunately, does not include dispersion effects. In the given paper we use an equation of
the form

hy + 3k, + Bhhx -+ ahex + Bhaxx 4+ Vhxxxz = 0
for waves on the surface of a fluid film for small Reynolds numbers. It obviously is the simplest form of a
wave equation including all effects enumerated above, especially dispersion (8= 0). It is also attempted to

study several properties of its solution. A fuller study of the behavior of the solution must, obviously, be car-
ried out by numerical analysis.

The full system of equations with boundary conditions, describing the flow of a fluid film over a vertical
wall is, in dimensionless variables, is

ut+uux+vuy+px:( + )/

2

cﬂ ’
6% (v, + uv, -+ v0,) + py :52( R )/Re-
i, + v, = 0.
The boundary conditions are:
u=v= Oly=0 '
v = ht -+ ujley:h: (3)
p=2[vy + 8%2u, —h. (uy + 8°v,) |/Re (1 4 8%h2) — 8 Whey yi
{1y +8%,) (1 — 8%h%) — 26%h, (s —vy) = Oy= ,*
where u, v are the vertical and horizontal components of the dimensionless velocity, p is pressure, x and y are
the coordinates along and across the film, and nondimensionalizing is performed as follows: x = x"L, y = y¥h,,

u = uUy, v = IvY/hyUy, p = (P'—P )/on, h = h%h, where L is a characteristic longitudinal dimension, hy is the
unperturbed width of the film, U, = ghd/v is a characteristic flow velocity, v is v1scosu:y, and the following

*As in Russian original — Publisher.
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parameters were introduced: 6 = hy/L, characterizing the wavelength , Re = UjL/v is the Reynolds number,
W = o/phyU3 is the Weber number, characterizing the surface tension, ¢ is the surface tension, and g is the
gravitational acceleration.
We represent the solution of this system in the form of a series in a small parameter £«1, the deviation
of the surface from the unperturbed position:
h=1+4 ey,
u="U + eu; + €u,,
v = &v; + €%, .
p = py + &py + ep,.
Consider the case Re~1, §<1 (wavelength). Substituting expressions (4) into (2), (3) and equating terms
of identical powers in €, we obtain in the zeroth order
Uyy/Re8® 4+ Lg/Us = pixr ply=0,
Uy = P = 0 y=1» U = Oly=o,

4)

whence follow p; =0 and U=y = y*42, i.e., the ordinary Poiseuille profile.

Transforming to the following two approximations, we choose the relation between the wavelength, and the
amplitude in the form & = ke, where k is a number of order 1.

This assumption implies that the velocity of the wave dispersion is of the same order as the velocity of
its nonlinear torsion. Under these conditions the system of equations acquires the form
e(uy + Uuge + Uty + Pra )= leugex + (tyyy
+ eugyy)fkl/Re,
ep1y + 8Py = kelevy, + (Viyy -+ &Vay )k Re,
e(usg + Vyy) + € (Ugx + Uyy) = 0,
Uy = uy = vy = v,= 0y,
evy + ey = eny + (U + eupenely=1ten,
epy + &%, = 2(37)111 + Bzvzy - S'Iny - sznxuly)/Re
_kezwnxxl y=1-}€eny
eUym + euyy + e%uyy 4 ke — 2kedn(ug: — vyy) = Ofy=tyens

(5)

Retaining everywhere the dominant terms in &, we obtain the following approximation:
gy = 0, pry = vyy,/Re,
Uiy -+ Uy == 01
uy = vy = Oly—p, U3 = Ny + Ungly—,
D= 2v1y/Re - 62WT|::::I!I=1:
Uy 4wy = 0_|y=1-

This system of equations has a solution in form of the so-called "kinematic" waves [7]:
Uy = yn, vl = —'flxya/z,
N =n(& —£), pp = —N(y + 1)/Re — W (6)

As seen from Eq. (6), in this approximation they are stationary and their velocity is ¢ = ghf/.
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To obtain an evolution equation of the shape of the surface 7n(x, t) it is necessary to construct the follow-
ing approximation, in which one assumes

. n = 1, 1), o
where £ =x—t; 7= &t.
Substituting (7) into (5) and transferring the boundary conditions to the point y = 1, we obtain
(U~ Dugg + Uyvy + piz = ugee/Re + uyy,/Rek,
Usg + Uy = 0, Uy = Uy = Oy,
=Vl + Uy = N -+ UM pe1s
Uy + kv = Olyey.
Substituting the known uy, vy, p; and eliminating the unknown uy, v, from the kinematic boundary condition
we obtain an equation for 7:

Ny + 2nmg + (2/15) Re knge +- Aneee + ( )’flgm =0,
or in dimensional form
4

ok 2U o[ (h—hy) ol + (2/15)U, ( ")hsa UGk ohgm(

)hmg =0,

where all quantities are dimensional,

This equation is an evolution equation describing nonlinear waves of small, but finite, amplitude on the
surface of a vertical fluid film. The term with h £ describes energy transfer into the wave from the stationary
basic flow, the term with hggg the action of surface tension, and the term with h £EE "hydrodynamic™ disper-
sion of waves. The presence of this term in the equation, as seen below, can imporfantly affect the behavior of
the solution (e.g., wave seclusion).

For the analysis we rewrite the equation in the form
2

2
P T2(Pq3§ A RCP&H— P CP&&H—

L3 preze = 0, @)
where ¢ = (' — ho) /h}; t= Ugt/L; R = gh}A?.

Consider a solution of Eq. (8) in the form of stationary waves. We seek a solutlon in the form ¢ = @{¢) =
¢(£— VT); then

. [ ’ 2 () s " h’ >IIII — (9)
— Vo' + 299" + =R +L2 Gl v T =0

Introducing the film number Fi= ¢%p3g1?, and integrating (9) over ¢ from — = to with account taken of the fact that

for a solitary wave of the soliton type ¢ = @' = ¢" = 9™ = ¢™ = 0 for {— x, while for a "step" ¢ = 0, {—+oo,

¢ =V for t——w, we obtain

2 [k C (RN, 1 FiYeR] 0
@ =Vyot 5 () Re + (o + 5 g 7 =0 0

Equation (10) makes it possible to analyze several characteristic features of waves, observed in film
flow. In Fig. 2 we show several typical profiles of film width. It is seen that for these natural waves (Fig. 2C)
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one observes a strong spread in wavelength, This can be explained qualitatively by Eq. (10) as follows., In

ﬂle region of small width the main terms of the equation are (¢—V)¢ and 1—25—’;“—Rq;’, so it acquires the form

' 3
(¢ —7) 9+ = -LRy' =0.

The phase trajectories of this equation have the shape of Fig. 3, where the arrow corresponds to in-
creasing { = §— Vt. When ¢ approaches the point ¢ = V the derivative ¢'—0, and this approximation takes
place asymptotically for ¢ —+, i,e., the solution in this region has the shape of Fig, 4.

In an experimental situation, however, a small random perturbation can lead to a vanishing ¢' and to
phase points merging again into position A. Since the perturbation is random in nature, the wavelength is also
random. The shape of the surface in the return region to point A is determined by terms with high derivatives.
In the case of wave excitation a definite wavelength is extracted, corresponding to the excitation frequency.

The effect of the dispersion term and of the term involving surface tension on the shape of solitary waves
and "steps" can be analyzed by considering the behavior of phase trajectories of Eq. (10) in neighborhoods of
stationary points for { —+e,

Consider the case of solitons. Substituting into the equation
¢ ~ c'w;/a’ '
we obtain the characteristic equation
%+ an? 4 bx —c =0, (11)
where g = SRA/FIV; b = &) RBFIA; ¢ = SVRV/FI,
The behavior of solutions near stationary points is determined by whether Eq, (11) has real or complex

roots. The effect of the dissipation term onthe presence of ogcillations at the edges for {— = is of interest,
since in the case a = 0, b>0 the criterion of having three real roots [8]
2 (36 — o%)° —6.75 (12)
4= (24® — 9ab — 27c)* <—67

is not satisfied, and, consequently, we always have one real and two complex conjugate roots ny, ny 3= % iw.

From the Vieta theorem it follows that
3VR2/3 .
AyHaky = %y (0% 4 0F) = TR
HyHy ~+ Ho¥g - K%y = b,
Ky + %y + %z = %y + 20 = —a,

i.e., for V> 0, @ = 0 we obtain ®;>0 and a =—ny/2 <0, i.e., for {—+ the bounded solution eMLfo corresponds to
the complex roots, and { ——o to the real one. Thus, a soliton has the shape of Fig. 5a, i.e., in front the solu-
tion is oscillating, and behind it is smooth., The situation is contrary for V<0. Waves of this type were obtained
numerically [9] and observed experimentally [10].

We show now the possibility of soliton existence without oscillations when the term with a third derivative
is included. For this it is necessary that the condition A <—6.75 be satisfied (the presence of three real roots),
while the roots must have different signs.

This is possible, e.g., for the case a = 0.3, b = 0.004, ¢ = 0.003 corresponding to the values n; = 0.08,

%y ==0.16, 3 = —0.234, R = 0.1, Fi= 10, V = 0,01, or @ = 3, b = 1.25, ¢ = 1.5, corresponding to the values w; =
0.5, ®y =—1.5, g =—2.0, R = 3,125, Fi = 10, V = 0.5.

In this case the soliton has the shape illustrated in Fig. 5b. To explain the general conditions of absence

of oscillations we use the fact that, asis well known from algebra (see, e.g., [11]), all roots of Eq. (11) are located
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in the left complex half-plane if and only if all its coefficients, i.e., @, b, and —c, have the same sign, and,
besides

—c — ba << 0,

Thus, for V>0 the roots ny, %, g are either all positive or have different signs. The first possibility

cannot be realized, since both extrema points of the cubic parabola (11) are always in the left half-plane for
a>0 and b>0. Consequently, a soliton without oscillations can exist if condition (12) is satisfied and V>0, or
for V<0

3 (—V)R¥8/FiV3 — ba = 0.
The author is grateful to V. E, Nakoryakov for guidance, and to V. G. Gasenko and O. Yu. Tsvelodub for

useful remarks and advice,
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